Beton-52.ru

Домашнему мастеру
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор тока на операционном усилителе

Генератор тока на операционном усилителе

ОУ широко применяется в аналоговых устройствах электроники. Функции, реализуемые ОУ с ООС, удобно рассматривать, если представить ОУ в виде идеальной модели, у которой:

  1. Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (R вх > ∞, i + = i — = 0).
  2. Выходное сопротивление операционного усилителя равно нулю, т.е. операционный усилитель со стороны входа является идеальным источником напряжения (R вых = 0).
  3. Коэффициент усиления по напряжению (коэффициент напряжения дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).
  4. В режиме насыщения напряжение на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.
  5. Синфазный сигнал не действует на операционный усилитель.
  6. Напряжение смещения нуля равно нулю.

Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока

Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым.
Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока – питание светодиодов, зарядка аккумуляторов и т.п.
Внимание! Не путайте стабилизатор тока со стабилизатором напряжения! Это может плохо кончиться =)

Простой стабилизатор тока на КРЕНке

Для этого стабилизатора тока достаточно применить КР142ЕН12 или LM317. Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт (при соблюдении теплового режима).
Схема и применение показаны на рисунках ниже

Стабилизатор тока на КР142ЕН12 (LM317)

Стабилизатор тока на КРЕН в качестве зярядного устройства

Собственное потребление данных микросхем относительно невелико – около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM317 работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2. В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше.

Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т.п.

Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения. Недостаток же такого регулятора тока – весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы.

Простой стабилизатор тока на двух транзисторах

Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы – не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения. Впрочем, для многих применений сгодятся и такие характеристики.

Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1. Транзистор VT1 открываясь начинает закрывать транзистор VT2 и ток через VT2 уменьшается.

Стабилизатор тока на транзисторах

Вместо биполярного транзистора VT2, можно применить MOSFET – полевой транзистор.

Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Для мощных MOSFET это напряжение составляет порядка 20В. Далее показана схема стабилизатора тока с использованием MOSFET.

Стабилизатор тока на полевом транзисторе

Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока. При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке:

Стабилизатор тока на полевом транзисторе

В схемах стабилизатора тока на транзисторах необходимое значение токозадающего резистора для заданного значения тока примерно в два раза меньше, чем в схемах со стабилизатором на КР142ЕН12 или LM317. Это позволяет применить токозадающий резистор меньшей мощности.

Читать еще:  Принцип работы парогенератора бытового

Стабилизатор тока на операционном усилителе (на ОУ)

Если необходимо собрать регулируемый в широких пределах стабилизатор тока или стабилизатор тока с токозадающим резистором на порядок или даже два ниже, чем на схемах, показанных ранее, можно применить схему с усилителем ошибки на ОУ (операционном усилителе). Схема такого стабилизатора тока показана на рис:

Стабилизатор тока на операционном усилителе

В данной схеме токозадающим является резистор R7. ОУ DA2.2 усиливает напряжение токозадающего резистора R7 – это усиленное напряжение ошибки. ОУ DA2.1 сравнивает опорное напряжение и напряжение ошибки и регулирует состояние полевого транзистора VT1.

Обратите внимание, что схема требует отдельного питания, подаваемого на разъем XP2. Напряжение питания должно быть достаточным для работы компонентов схемы и не превышать значения напряжения пробоя затвора MOSFET VT1.

В качестве генератора опорного напряжения в схеме на рис. 7 применена микросхема DA1 REF198 с выходным напряжением 4,096В. Это достаточно дорогая микросхема, поэтому ее можно заменить обычной кренкой, а если напряжение питания схемы (+U) является стабильным, то и вовсе обойтись без стабилизатора напряжения в данной схеме. В этом случае переменный резистор R подсоединяется не к REF, а к +U. В случае электронного управления схемой вывод 3 DA2.1 можно подключить непосредственно к выходу ЦАП.

Для настройки схемы необходимо выставить ползунок переменного резистора R1 в верхнее по схеме положение, подстроечным резистором R3 установить необходимое значение тока – это значение будет максимальным. Теперь резистором R1 можно регулировать ток через VT1 от 0 до установленного при настройке максимального тока. Элементы R2, C2, R4 необходимы для предотвращения возбуждения схемы. Из-за этих элементов временные характеристики не являются идеальными, что видно по осциллограмме

Осциллограмма стабилизатора тока на ОУ

На осциллограмме луч 1 ( желтый ) показывает напряжение нагружаемого ИП (источника питания), луч 2 ( голубой ) показывает напряжение на токозадающем резисторе R7. Как видно, в течение 80 мкс через схему протекает ток в несколько раз больше установленного.

Стабилизатор тока на микросхеме импульсного стабилизатора напряжения

Иногда от стабилизатора тока требуется не только работать в широком диапазоне питающих напряжений и нагрузок, но и иметь высокий КПД. В этих случаях компенсационные стабилизаторы не годятся и на смену им приходят стабилизаторы импульсные (ключевые). Кроме того, импульсные стабилизаторы могут при небольшом входном напряжении получать высокое напряжение на нагрузке.

Далее предлагается к рассмотрению широко распространенная микросхема MAX771. Основные характеристики MAX771:

  • Напряжение питяния 2…16,5В
  • Собственное потребление 110uA
  • Выходная мощность до 15W
  • КПД при токе нагрузки 10mA…1A достигает 90%
  • Опорное напряжение 1,5V

На рисунке показан один из вариантов включения микросхемы, именно его мы и возьмем за основу нашей схемы.

MAX771 включен как повышающий стабилизатор напряжения

Упрощенно процесс стабилизации выглядит следующим образом. Резисторы R1 и R2 являются делителями выходного напряжения микросхемы, как только делимое напряжение, поступающее на вывод FB микросхемы MAX771, больше опорного напряжения (1,5V) микросхема уменьшает выходное напряжение и наоборот — если напряжение на выводе FB меньше 1,5V, микросхема увеличивает входное напряжение.

Очевидно, что если контрольные цепи изменить так, чтобы MAX771 реагировала (и соответственно регулировала) выходной ток, то мы полчим стабилизированный источник тока.
Ниже показаны модифицированная схема с ограничением выходного напряжения и вариант нагрузки.

При небольшой нагрузке, пока падение напряжения на токоизмерительном резисторе R3 меньше 1,5V, схема на Рис.10a работает как стабилизатор напряжения, стабилизируя напряжение на уровне стабилитрона VD2 + 1,5V. Как только ток нагрузки становится достаточно большим, на R3 падение напряжения увеличивается и схема переходит в режим стабилизации тока.

Резистор R8 устанавливается в том случае, если напряжение стабилизации может быть большим — больше 16,5V. Резистор R3 является токозадающим и рассчитывается по формуле: R3 = 1,5/Iст.
Недостатком схемы является достаточно большое падение напряжения на токоизмерительном резисторе R3. Данный недостаток устраняется применением операционного усилителя (ОУ) для усиления сигнала с резистора R3. Например, если резистор требуется уменьшить в 10 раз при заданном токе, то усилитель на ОУ должен усилить напряжение падающее на R3 тоже в 10 раз.

Заключение

Итак, было рассмотрено несколько схем выполняющих функцию стабилизации тока. Конечно же, эти схемы можно улучшать, увеличивая быстродействие, точность и т.д. Можно применять в качестве датчика тока специализированные микросхемы и делать сверхмощные регулирующие элементы, но эти схемы идеально подходят в тех случаях, когда требуется быстро создать инструмент для облегчения своей работы или решения определенного круга задач.

Читать еще:  Как сделать водородный генератор своими руками

Что нужно для расчёта источника тока.

Пример расчета простого генератора тока на биполярном транзисторе

Пример расчета:

10 response to «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.»

By: Александр Posted: 03.05.2020

Здравствуйте. Скажите,как посчитали: При Rбал. = 2 кОм и дельта Uпит. = 18 В, дельта Uоп. составит 0,53 В.

Динамическое сопротивление стабилитрона:
rст = 60 Ом (См. таблицу выше)

dI = dU/2кОм = 9мА
dUоп. = dI * rст. = 0.009 * 60 = 0.54 В
Простите на 0,01V ошибся. Но я считал навскидку.

By: АЛЕКС Posted: 16.01.2020

А во! — Вразумте дядько разницу между генератором тока и напряжения или как там ЭДС, а также, что подразумить глядя на батарейку — это источник тока и источник ЭДС, а где там вооще то есть напряжение и что мы в первую очередь можем определить и измерить.
Может это курица и яйцо ;))

То есть дядько Вам сейчас в своём ответе должен пересказать всю статью?
Там есть объяснение в чём разница.
А к чему Вы приплели здесь ЭДС. Это вообще овощ с другого огорода и к созданию электронных схем никакого отношения не имеет.
Если Вам это точно интересно то вот Вам ссылка: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html

By: triak Posted: 01.08.2020

нас в институте учили так — если внутреннее сопротивление источника близко к нулю, — это источник напряжения.
Если внутреннее сопротивление источника близко к бесконечности, — это источник тока.
Любая реальная батарейка, аккум или выход выпрямителя — где-то между.
Пока при снижении сопротивления нагрузки (т.е. увеличении нагрузки) напряжение на ней не падает (а только растёт ток через неё) — это она питается от хорошего источника напряжения.
Если при изменении величины нагрузки остаётся стабильным ток через неё (по при этом меняется напряжение, и ИСТОЧНИК НЕ ПЕРЕГРЕВАЕТСЯ и не сгорает) — она питается от хорошего источника тока

Ну так в статье как раз об этом и рассказано. Только вот в статье дано математическое обоснование всему этому и примеры расчетов.
Что касается батарейки, аккумуляторов, солнечных элементов, различных электрогенераторов без схем управления и т.д. и т.п., то они действительно находятся между генератором напряжения и генератором тока. Называются такие источники источниками ЭДС.

By: Алекс Posted: 15.01.2020

Упс:)
<>
— Из тогот, что Uстаб=Uбэ+Uэ и постоянном напряжением Uiсточ. МОЖНО сделать вывод:, — что повышая Rнагр ток проходящий через Rэ будет падать и ни о какой стабилизации тока нет и речи касательно самых первых примитивных схем. Источнику негде взять повышение напряжения соразмерно повышения Rнагр.

УПС:)
А Вы статью вообще читали в каком состоянии?
Ведь в ней об этом говорится и в расчётах это учитывается.
Да, есть граничные условия для напряжения питания и максимальной величины Rнагр.
При определённом Uпит. есть некоторый диапазон 0

By: Юрий Posted: 28.04.2019

Идеального генератор тока и напряжения в природе не существует.Все зависит он нагрузки, когда мы можем говорить об одном или о другом.Точнее об соотношении нагрузки и внутреннего сопротивления источника.То,что вы приводите в конце статьи- это перевод .Возможно даже машинный.Что же к этому придираться?

Я придираюсь к тем кто публикует такие переводы.
Или их также публикуют машины?

Но на самом деле если Вы наберёте в поиске запрос «генератор тока»
То таких, как Вы говорите «переводов» найдёте море, да практически
все результаты поиска будут из них состоять.

Что именно делает PNP транзистор?

Вы можете думать о транзисторе либо как о регулируемом клапане, который позволяет операционному усилителю увеличивать или уменьшать ток, протекающий через R2 и R3, либо как об устройстве с переменным падением напряжения, которое операционный усилитель может использовать для установки правильного напряжения в точке Vвых. В обоих случаях конечный результат один и тот же: транзистор является средством, с помощью которого операционный усилитель может заставить напряжение на инвертирующем входе равняться напряжению на неинвертирующем входе.

Транзистор действительно является самой интересной частью данной схемы. Мы часто используем биполярные транзисторы в приложениях «включить или выключить», и важно понимать, что ситуация в данной схеме совершенно иная. Операционный усилитель (конечно с помощью отрицательной обратной связи) на самом деле делает небольшие точные подстройки напряжения эмиттер-база (VЭБ) биполярного транзистора. На следующем графике показано напряжение VЭБ для диапазона токов нагрузки (соответствующих сопротивлениям нагрузки от 50 до 300 Ом).

Читать еще:  Как проверить обмотку генератора мультиметром

Зависимость напряжения эмиттер-база транзистора от сопротивления нагрузки

Обратите внимание, что все эти напряжения близки к типовому порогу открытия (

0,6 В) для кремниевого PN перехода. Это говорит о том, что операционный усилитель очень тщательно согласовывает пороговую область биполярного транзистора, чтобы обеспечить требуемые (и относительно большие) изменения падения напряжения эмиттер-коллектор. Весь диапазон значений VЭБ составляет всего

50 мВ, зависимость изменения напряжения эмиттер-коллектор, равного

4 В, от изменения напряжения эмиттер-база, равного

50 мВ, приведена ниже:

Зависимость напряжения эмиттер-коллектор от напряжения эмиттер-база

Частотно-избирательные цепи, используемые в генераторах

f = 1/(2p)

LC контур обладает ярко выраженными частотно избирательными свойствами.

Полоса пропускания — Df = f/Q,

Q – добротность колебаний контура,

R – сопротивление потерь в контуре,

r — волновое сопротивление контура.

r =

Высокочастотный контур имеет узкую полосу пропускания и используется в фильтрах, а также для организации частотно избирательной ОС в генераторе.

Для обеспечения сигнала ОС используются:

· полное включение контура

· трансформаторное включение контура с помощью катушки связи.

· автотрансформаторное включение с помощью отвода от основной катушки

индуктивная трех точка

· емкостная трех точка

Полное включение контура обычно используется в генераторах, имеющих высокое входное сопротивление усилителя, т. е. когда (входн/выходн) цепь генератора не сильно шунтирует сам контур, т. е. вносит слабые потери.

Остальные варианты включения позволяют снизить нагрузку на контур и оптимизировать цепь ОС, но требует дополнительных выводов.

Генераторы с LC контуром, как правило, используются на ВЧ f > 0,1¸1 МГц.

В таких генераторах, особенно ВЧ, может быть учтено и использовано влияние монтажной емкости схемы. LC генераторы обладают более высокой стабильностью частоты, чем RC.

Измерение тока на стороне высокого напряжения

При измерении тока со стороны высокого напряжения в разрыв цепи между источником питания и активной нагрузкой устанавливается токовый шунтовый резистор (рис. 3) с использованием токового усилителя Texas Instruments INA240 в качестве аналогового интерфейса (AFE). Синфазное входное напряжение этой микросхемы может значительно превышать напряжение питания, что делает ее хорошим выбором для измерений тока на стороне высокого напряжения.

Рис. 3. В схеме измерения тока со стороны высокого напряжения токоизмерительный резистор устанавливается между источником питания и активной нагрузкой

Измерения тока со стороны высокого напряжения имеют два ключевых преимущества по сравнению с измерением со стороны низкого. Во-первых, легко обнаружить короткое замыкание на корпус, возникающее внутри нагрузки, потому что результирующий ток короткого замыкания будет протекать через токовый шунтовый резистор, создавая на нем повышенное напряжение. Во-вторых, этот метод измерения не связан с точкой заземления, поэтому дифференциальные напряжения на шине заземления, создаваемые большими протекающими токами, не влияют на измерение. Тем не менее, по-прежнему рекомендуется размещать соединение опорного заземления АЦП ближе к заземлению усилителя.

Метод измерения тока на стороне высокого напряжения имеет один главный недостаток. Как отмечалось выше, необходимо, чтобы токовый усилитель имел высокое подавление синфазного сигнала, поскольку небольшое напряжение, развиваемое на токовом шунте, лишь чуть ниже напряжения питания нагрузки. В зависимости от конструкции системы синфазное напряжение может быть довольно большим. Токовый усилитель тока INA240 на рисунке 3 имеет широкий диапазон колебаний синфазного напряжения от -4 до 80 вольт.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

  1. Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
  2. Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
  3. И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector