Beton-52.ru

Домашнему мастеру
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы защиты от обрыва или отгорания нуля

Способы защиты от обрыва или отгорания нуля

Всем известно, что ток в электрической сети течет по замкнутому контуру, питая при этом разнообразную бытовую технику и промышленное оборудование. Сеть подачи электроэнергии в частные дома, квартиры и дачи является одним из направлений распределения электричества в глобальной системе энергоснабжения разнообразных объектов. Все это говорит о том, что для питания бытовых электроприборов необходимы как минимум два электрических проводника, которые создадут замкнутую цепь электропитания домашней техники.

Эти проводники называются фазным (L) и рабочим нулевым (N). «Ноль» не опасен для человека при прикосновении к нему, так как на нем отсутствует напряжение сети. Но это не значит, что через него не протекает электрический ток. В идеальном случае, в однофазной сети, величина тока, проходящего через фазный проводник полностью совпадает со значением этого параметра, протекающего через нейтральный провод. В этой статье мы рассмотрим вопрос, причины обрывы или обгорания нулевого проводника, что происходит в случае такой аварийной ситуации, последствия этой аварии и какая защита от обрыва «нуля» способна исключить такое негативное явление.

Внимание! Обгорание нейтрального проводника в трехфазной магистральной линии электроснабжения способен вызвать изменение величины напряжения от минимального до максимального значения в 380 В, а обрыв «нуля» внутренней электропроводки обесточит сеть с появлением фазы на нулевом контакте розетки.

Область применения на практике

Теоретическая часть без предварительной подготовки воспринимается достаточно сложно, поэтом перейдем к практике и ответим на вопрос, где применяется ТЗНП.

Как уже было сказано токовая защита нулевой последовательности используется в ВВ сетях напряжением 110 кВ с заземленной нейтралью. В сетях среднего напряжения 6, 10 кВ и больше с изолированной нейтралью не используется. Это связано с тем, что в сетях с заземленной нейтралью токи КЗ на землю очень большие.

Важно! Так как ТЗНП защищает от КЗ на землю, ее иногда называют земляной защитой (ЗЗ).

2.Токовая направленная защита нулевой последовательности .

Защиты, использующие только один сигнал тока НП, несмотря на свою простоту, имеют существенные недостатки, которые будут приводить к их неселективным действиям. В ходе дальнейшего усовершенствования таких защит стали использовать два сигнала – ток и напряжение НП для определения направления. Большое число направленных защит реагируют на направление мощности нулевой последовательности в установившемся режиме. Чувствительность таких защит выше, чем ненаправленных, так как их ток срабатывания отстраивается только от тока небаланса в максимальном рабочем режиме, а отстройка защиты от собственного ёмкостного тока линии не требуется, поскольку от этого тока она отстроена по направлению. Общим недостатком защит такого типа являются их неселективные действия или отказ в срабатывании при перемежающихся дуговых ОЗЗ.

Читать еще:  Логическая защита шин принцип действия

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Чтобы подключить магнитный пускатель нужно понять его принцип действия, изучить конструктивные особенности. Тогда, несмотря на кажущуюся сложность схемы подключения вам не составит труда правильно подключить магнитный пускатель, даже если до этого вам никогда не приходилось иметь дело с ним.

Схема подключения нереверсивного магнитного пускателя

  • QF — автоматического выключателя
  • KM1 — магнитного пускателя
  • P — теплового реле
  • M — асинхронного двигателя
  • ПР — предохранителя
  • (С-стоп, Пуск) — кнопки управления

Рассмотрим работу схемы в динамике. Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя. При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя.

Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается. После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии. Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей. Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Читать еще:  Степень защиты ip расшифровка

Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В

Схема подключения реверсивного магнитного пускателя

Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель. Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.

Включаем QF – автоматический выключатель, давим кнопку «Пуск [1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]». Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.

Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение. Схема готова к реверсу, нажимаем кнопку «Пуск [2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск [2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1.

Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, — аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Читать еще:  Защита от постоянных электрических и магнитных полей

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном слу­чае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).

Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического обору­дования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока.

Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей — четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.

Защита двигателя при использовании частотного преобразователя

Преобразователь частоты – это электронное устройство, способное реализовать программно или аппаратно различные виды защиты.

Частотный преобразователь позволяет изменять скорость вращения вала. При этом изменяется не только частота питающего напряжения, но и величина напряжения. Важно правильно устанавливать рабочие точки на вольт-частотной характеристике двигателя.

В частном случае отношение напряжения к частоте является константой. Однако, исходя из принципов и задач регулирования, можно менять это отношение, изменяя форму кривой регулирования. Например, из-за понижения момента на низких частотах прибегают к увеличению минимального выходного напряжения, что, при злоупотреблении, может привести к перегреву.

При работе двигателя от частотного преобразователя, когда скорость вращения может быть гораздо меньше номинала, необходимо устанавливать принудительное независимое воздушное охлаждение.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector