Beton-52.ru

Домашнему мастеру
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита трансформаторного масла

Защита трансформаторного масла

Одним из самых капризных элементов масляного трансформатора является само масло. Оно должно удовлетворять ряду жестких требований.

Диэлектрическая прочность должна быть для аппаратов:

  • до 15 кВ включительно — 30 кВ,
  • от 15 до 35 кВ — 35 кВ,
  • от 60 до 220 КБ — 45 кВ,
  • от 330 до 500 кВ — 55 кВ,
  • 750 кВ — 60 кВ.

Испытания проводятся в стандартном сосуде, содержащем полусферические электроды с расстоянием 2 мм.

Кислотное число: в 1 г масла не должно быть больше 0,03 мг КОН.

Температура вспышки не должна быть ниже 135°С.
Вязкость кинематическая, сСт, при 20°С — не более 30, при 50°С — не более 9.
Температура застывания не выше -50°С.

Тангенс угла диэлектрических потерь в % не более: при 20°С — 0,2%, при 70°С — 2,0%.

Здесь приведены только некоторые требования к маслу согласно ТУ 38-101-281-72. Для различных типов масел, масел разных заводов из нефти разного происхождения существуют различные нормы. Поставка свежего масла с завода обычно сопровождается соответствующим сертификатом на него. Масло неизвестного происхождения без документов использовать ни в коем случае нельзя: во-первых, его параметры и состав могут не подходить к данным условиям; во-вторых, смешение двух различных масел, по отдельности даже очень хороших, может привести к полной потере качества смеси масел.

Основным врагом масла является влага, опасен маслу и кислород воздуха. Поэтому масло в трансформаторах отделяют от воздуха различными затворами и обезвоживают перед заливкой в трансформатор, посла заливки, а также во все время работы трансформатора.

В процессе работы трансформатор нагревается, при отключении охлаждается. Это сопровождается изменением объема масла в трансформаторе. При расширении масло вытесняется в маслорасширитель (рис.3), который соединен о верхней крышкой бака трансформатора. Объем расширителя должен быть достаточным, чтобы принять нагретое масло. Необходимый объем расширителя вычисляется по следующей формуле:
,
где (м3) — объем масла в трансформаторе;
=0,0007 — температурный коэффициент расширения масла;
(°С)=65-70°С — температура горячего масла;
(°С)= -35 — -40°С — минимальная температура воздуха зимой.

Рис.3. Расширитель трансформатора: а — продольный разрез по расширителю, б — вид сбоку. 1 — трубка маслоуказателя; 2 — дыхательный конец трубки маслоуказателя; 3 — дыхательная трубка расширителя; 4 — патрубок для присоединения к трансформатору; 5 — пробка заливочного отверстия; 6 — отстойник масла для сбора осадка; 7 — выхлопная труба; 8 — предохранительная диафрагма (рвется или ломается при повышении давления); 9 — трубка, соединяющая выхлопную трубу и расширитель; 10 — сливной краник; II — газовое реле; 12 — бак трансформатора

Если принять перепад температур в 100-110°С, то полезный объем расширителя должен быть 7-8%, а полный объем — 8-9% объема масла в трансформаторе.

На расширителе есть маслоуказателъ в виде стеклянной трубки или прибора с круглой шкалой, кинематически связанный с поплавком внутри расширителя.

В любом случае на маслоуказателе нанесены три черты, соответствующие уровням масла при температурах -35°; +15°; +35°С.

Принцип работы пленочной защиты трансформатора

Принцип действия пленочной защиты трансформатора заключается в следующем: из масла и твердой изоляции удаляется газ. Герметизация трансформатора осуществляется с помощью эластичной емкости, установленной в расширителе трансформатора. Таким образом, обеспечивается более надежная защита изоляции трансформатора, так как исключается не только возможность окисления и увлажнения масла, но в значительной мере уменьшается вероятность возникновения электрических разрядов, центрами развития которых, как правило, являются газовые включения.

На трансформаторах с пленочной защитой, так же, как и на трансформаторах без нее устанавливаются фильтры непрерывной регенерации.

Наружная поверхность эластичной емкости имеет те же размеры и форму, что и внутренняя поверхность расширителя. Воздух или азот поступает внутрь эластичной емкости через осушитель. Внутри расширителя эластичная емкость подвешивается на петлях.

При увеличении объема масла в расширителе газ из емкости вытесняется в атмосферу или в емкость с азотом, а при уменьшении объема масла, наоборот, засасывается в эластичную емкость.

Расширитель трансформатора с пленочной защитой имеет патрубки для соединения с трансформатором и для доливки масла, петли для крепления эластичной емкости, газосборочный коллектор и монтажные люки. Внутри эластичной емкости установлен рычаг стрелочного маслоуказателя для контроля за уровнем масла в расширителе.

Газосборочный коллектор служит для выпуска воздуха из пространства между эластичной емкостью и расширителем во время монтажа. Во время эксплуатации коллектор с помощью реле, реагирующего на появление газа в нем, служит для контроля герметичности расширителя и эластичной емкости. В верхней части расширителя установлено реле поплавкового типа, которое должно подавать сигнал в случае повреждения эластичной емкости. Для более надежной герметизации трансформатора с пленочной защитой вместо предохранительной трубы устанавливается предохранительный клапан.

Что такое дегазация

В новом трансформаторе все элементы содержат определенный объем воздуха и влаги. Чем выше качество обработки на заводе, тем меньше примесей. В процессе эксплуатации масляная среда тоже поглощает воздух, какое-то количество растворяется.

Остальной объем сохраняется в виде пузырьков. Трансформатор может служить до 25-и лет, а маслу необходима ежегодная очистка и регенерация с периодичностью в 5 лет.

На периодичность дегазации не влияет:

  • наличие фильтров, поглощающих газы;
  • предотвращение перегрева;
  • фильтрация;
  • чистка от механических примесей;
  • использование антиокислителей;
  • наличие защитной подушки из инертного газа (окиси углерода, метана, сухого азота).

Несмотря на меры защиты при реакции масляной среды с диэлектриками и проводниками она окисляется, причем состав воздуха отличается от состава в окружающей среде (30,2% кислорода и 69,8% азота). Дегазация трансформаторного масла – это один из этапов процесса регенерации, предназначенный для удаления пузырьков и растворившихся газов.

Обязательна предварительная сушка, снижающая уровень влаги до 0,001%.

Пленочная защита трансформаторного масла

электроизмерения
проектирование
электромонтаж

Электролаборатория

Эти люди доверяют нам

  • Facebook
  • ВКонтакте
  • Электролаборатория » Вопросы и ответы » ПТЭЭП 2003 года » Таблица 2. Силовые трансформаторы, автотрансформаторы и масляные реакторы (далее — трансформаторы)

    2. Силовые трансформаторы, автотрансформаторы и масляные реакторы (далее трансформаторы).

    К, Т, М — производятся в сроки, устанавливаемые системой ППР.

    2.1. Определение условий включения трансформатора

    Трансформаторы, прошедшие капитальный ремонт с полной или частичной заменой обмоток или изоляции, подлежат сушке независимо от результатов измерений. Трансформаторы, прошедшие капитальный ремонт без замены обмоток или изоляции, могут быть включены в работу без подсушки или сушки при соответствии показателей масла и изоляции обмоток требованиям таблицы 1 (Приложение 3.1), а также при соблюдении условий пребывания активной части на воздухе. Продолжительность работ, связанных с разгерметизацией должна быть не более:

    1) для трансформаторов на напряжение до 35 кВ — 24 ч при относительной влажности до 75% и 16 ч при относительной влажности до 85%;

    2) для трансформаторов напряжением 110 кВ и более — 16 ч при относительной влажности до 75% и 10 ч при относительной влажности до 85%. Если время осмотра трансформатора превышает указанное, но не более чем в 2 раза, то должна быть проведена контрольная подсушка трансформатора

    При заполнении трансформаторов маслом с иными характеристиками, чем у слитого до ремонта, может наблюдаться изменение сопротивления изоляции и tgd, что должно учитываться при комплексной оценке состояния трансформатора

    Условия включения сухих трансформаторов без сушки определяются в соответствии с указаниями завода-изготовителя

    При вводе в эксплуатацию трансформаторов, прошедших капитальный ремонт в условиях эксплуатации без смены обмоток и изоляции рекомендуется выполнение контроля в соответствии с требованиями, приведенными в нормативно-технической документации

    2.2. Измерение сопротивления изоляции:

    Наименьшие допустимые значения сопротивления изоляции, при которых возможно включение трансформаторов в работу после капитального ремонта, регламентируются указаниями табл.2 (Приложение 3.1)

    Измерения в процессе эксплуатации производятся при неудовлетворительных результатах испытаний масла и (или) хроматографического анализа растворенных в масле газов, а также в объеме комплексных испытаний

    Для трансформаторов на напряжение 220 кВ сопротивление изоляции рекомендуется измерять при температуре не ниже 20°С, а до 150 кВ — не ниже 10°С

    Измеряется мегаомметром на напряжение 2500 В

    Производится как до ремонта, так и после его окончания. См. также примечание 3

    Измерения производятся по схемам табл.3 (Приложение 3.1). При текущем ремонте измерение производится, если специально для этого не требуется расшиновка трансформатора

    2) доступных стяжных шпилек, бандажей, полубандажей ярем, прессующих колец, ярмовых балок и электростатических экранов

    Измеренные значения должны быть не менее 2 МОм, а сопротивление изоляции ярмовых балок не менее 0,5 МОм

    Измеряется мегаомметром на напряжение 1000 В у масляных трансформаторов только при капитальном ремонте, а у сухих трансформаторов и при текущем ремонте

    2.3. Измерение тангенса угла диэлектрических потерь tgd изоляции обмоток

    Для трансформаторов, прошедших капитальный ремонт, наибольшие допустимые значения tgd изоляции приведены в табл.4 (Приложение 3.1)

    При межремонтных испытаниях измерение производится у силовых трансформаторов на напряжение 110 кВ и выше или мощностью 31500 кВА и более

    В эксплуатации значение tgd не нормируется, но оно должно учитываться при комплексной оценке результатов измерения состояния изоляции. Измерения в процессе эксплуатации проводятся при неудовлетворительных результатах испытаний масла и (или) хроматографического анализа растворенных в масле газов, а также в объеме комплексных испытаний. Результаты измерений tgd изоляции обмоток, включая динамику их изменений, должны учитываться при комплексном рассмотрении данных всех испытаний

    У трансформаторов на напряжение 220 кВ tgd рекомендуется измерять при температуре не ниже 20°С, а до 150 кВ не ниже 10°С. Измерения производятся по схемам табл.3 (Приложение 3.1)

    См. также примечание 3

    2.4. Испытание повышенным напряжением промышленной частоты

    1) изоляции обмоток 35 кВ и ниже вместе с вводами

    См. табл.5 (Приложение 3.1). Продолжительность испытания – 1 мин. Наибольшее испытательное напряжение при частичной замене обмоток принимается равным 90%, а при капитальном ремонте без замены обмоток и изоляции или с заменой изоляции, но без замены обмоток — 85% от значения, указанного в табл. 5 (Приложение 3.1).

    При капитальных ремонтах маслонаполненных трансформаторов без замены обмоток и изоляции испытание изоляции обмоток повышенным напряжением не обязательно. Испытание изоляции сухих трансформаторов обязательно

    2) изоляции доступных для испытания стяжных шпилек, бандажей, полубандажей ярем, прессующих колец, ярмовых балок и электростатических экранов

    Производится напряжением 1 кВ в течение 1 мин, если заводом-изготовителем не установлены более жесткие нормы испытания

    Испытание производится в случае вскрытия трансформатора для осмотра активной части. См. также п.3.25.

    3) изоляции цепей защитной аппаратуры.

    Производится напряжением 1 кВ в течение 1 мин

    Значение испытательного напряжения при испытаниях изоляции электрических цепей манометрических термометров — 0,75 кВ в течение 1 мин

    Испытывается изоляция (относительно заземленных частей) цепей с присоединенными трансформаторами тока, газовыми и защитными реле, маслоуказателями, отсечным клапаном и датчиками температуры при отсоединенных разъемах манометрических термометров, цепи которых испытываются отдельно

    2.5. Измерение сопротивления обмоток постоянному току

    Должно отличаться не более чем на 2% от сопротивления, полученного на соответствующих ответвлениях других фаз, или от значений заводских и предыдущих эксплуатационных измерений, если нет особых оговорок в паспорте трансформатора

    В процессе эксплуатации измерения могут производиться при комплексных испытаниях трансформатора

    Производится на всех ответвлениях,. если в заводском паспорте нет других указаний, и если для этого не требуется выемки активной части. Перед измерениями сопротивления обмоток трансформаторов, снабженных устройствами регулирования напряжения, следует произвести не менее трех полных циклов переключения

    2.6. Проверка коэффициента трансформации

    Должен отличаться не более чем на 2% от значений, полученных на соответствующих ответвлениях других фаз, или от заводских (паспортных) данных. Кроме того, для трансформаторов с РПН разница коэффициентов трансформации должна быть не выше значения ступени регулирования

    Производится на всех ступенях переключателя

    2.7. Проверка группы соединения обмоток трехфазных трансформаторов и полярности выводов однофазных трансформаторов

    Группа соединений должна соответствовать паспортным данным, а полярность выводов — обозначениям на щитке или крышке трансформатора

    Производится при ремонтах с частичной или полной заменой обмоток

    2.8. Измерение тока и потерь холостого хода

    Значение тока и потерь холостого хода не нормируется.

    Измерения производятся у трансформаторов мощностью 1000 кВА и более

    Производится одно из измерений:

    1) при номинальном напряжении измеряется ток холостого хода

    2) при пониженном напряжении измеряются потери холостого хода по схемам, по которым производилось измерение на заводе-изготовителе

    2.9. Оценка состояния переключающих устройств

    Осуществляется в соответствии с требованиями инструкций заводов-изготовителей или нормативно-технических документов

    2.10. Испытание бака на плотность

    Продолжительность испытания во всех случаях — не менее 3 ч

    Температура масла в баке трансформаторов напряжением до 150 кВ не ниже 10 °С, трансформаторов 220 кВ — не ниже 20 °С

    Не должно быть течи масла

    Герметизированные трансформаторы и не имеющие расширителя испытаниям не подвергаются

    у трансформаторов напряжением до 35 кВ включительно — гидравлическим давлением столба масла, высота которого над уровнем заполненного расширителя принимается равной 0,6 м; для баков волнистых и с пластинчатыми радиаторами — 0,3 м;

    у трансформаторов с пленочной защитой масла — созданием внутри гибкой оболочки избыточного давления воздуха 10 кПа

    у остальных трансформаторов — созданием избыточного давления азота или сухого воздуха 10 кПа в надмасляном пространстве расширителя

    2.11. Проверка устройств охлаждения

    Устройства должны быть исправными и удовлетворять требованиям заводских инструкций

    Производится согласно типовым и заводским инструкциям

    2.12. Проверка средств защиты масла от воздействия окружающего воздуха

    Проверка воздухоосушителя, установок азотной и пленочной защит масла, термосифонного или адсорбирующего фильтров производится в соответствии с требованиями инструкций заводов-изготовителей или нормативно-технических документов

    Индикаторный силикагель должен иметь равномерную голубую окраску зерен. Изменение цвета зерен силикагеля на розовый свидетельствует о его увлажнении

    2.13. Испытание трансформаторного масла:

    1) из трансформаторов;

    У трансформаторов напряжением до 35 кВ включительно — по показателям п.п.1-5, 7 табл.6 (приложение3.1)

    1) после капитальных ремонтов трансформаторов

    2) не реже 1 раза в 5 лет для трансформаторов мощностью выше 630 кВА, работающих с термосифонными фильтрами;

    У трансформаторов напряжением 110 кВ и выше — по показателям п.п.1-9 табл.6 (приложение 3.1), а у трансформаторов с пленочной защитой дополнительно по п.10 той же таблицы

    3) не реже 1 раза в 2 года для трансформаторов мощностью выше 630 кВА, работающих без термосифонных фильтров

    Производится 1 раз в 2 года, а также при комплексных испытаниях трансформатора

    2) из баков контакторов устройств РПН

    Масло следует заменить:

    1) при пробивном напряжении ниже 2,5 кВ в контакторах с изоляцией 10 кВ, 30 кВ — с изоляцией 35 кВ, 35 кВ — с изоляцией 40 кВ, 110 кВ — с изоляцией 220 кВ;

    2) если в нем обнаружена вода (определение качественное) или механические примеси (определение визуальное)

    Производится в соответствии с инструкцией завода-изготовителя данного переключателя

    2.14. Испытание трансформаторов включением на номинальное напряжение

    В процессе 3-5 кратного включения трансформатора на номинальное напряжение и выдержки под напряжением в течение времени не менее 30 мин не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора

    Трансформаторы, работающие в блоке с генератором, включаются в сеть подъемом напряжения с нуля

    2.15. Хроматографи-ческий анализ газов, растворенных в масле

    Оценка состояния трансформатора и определение характера возможных дефектов производится 1 раз в 6 мес. в соответствии с рекомендациями методических указаний по диагностике развивающихся дефектов по результатам хроматографического анализа газов, растворенных в масле

    Состояние трансформаторов оценивается путем сопоставления измеренных данных с граничными концентрациями газов в масле и по скорости роста концентрации газов в масле

    2.16. Оценка влажности твердой изоляции

    Допустимое значение влагосодержания твердой изоляции после капитального ремонта — 2%, эксплуатируемых — 4% по массе; в процессе эксплуатации допускается не определять, если влагосодсржание масла не превышает 10 г/т

    Производится первый раз через 10-12 лет после включения, в дальнейшем 1 раз в 4-6 лет у трансформаторов напряжением 110 кВ и выше мощностью 60 MBА и более

    При капитальном ремонте определяется по влагосодержанию заложенных в бак образцов, в эксплуатации — расчетным путем

    2.17. Оценка состояния бумажной изоляции обмоток:

    по наличию фурановых соединений в масле

    Допустимое содержание фурановых соединений, в том числе фурфурола, приведено в п.11 табл.6 (Приложение 3.1)

    Производится хроматографическими методами 1 раз в 12 лет, а после 24 лет эксплуатации — 1 раз в 4 года

    по степени полимеризации бумаги

    Ресурс бумажной изоляции обмоток считается исчерпанным при снижении степени полимеризации бумаги до250 единиц

    2.18. Измерение сопротивления короткого замыкания (Zk) трансформатора

    Значения Zk, не должны превышать исходные более чем на 3%. У трехфазных трансформаторов дополнительно нормируется различие значений Zk по фазам на основном и крайних ответвлениях — оно не должно превышать 3%

    Производится у трансформаторов мощностью 125 МВА и более (при наличии РПН — на основном и обоих крайних ответвлениях) после воздействия на трансформатор тока КЗ, превышающего 70% расчетного значения, а также в объеме комплексных испытаний

    2.19. Испытание вводов

    Производится в соответствии с указаниями раздела 10

    2.20. Испытание встроенных трансформаторов тока

    Производится в соответствии с указаниями п.п.20.1, 20.3.2, 20.5, 20.6, 20.7 раздела 20

    2.21. Тепловизионный контроль

    Производится в соответствии с установленными нормами и инструкциями заводов-изготовителей

    Примечания:
    1. Испытания по п.п.2.1, 2.3, 2.8-2.12, 2.13, 2.15 и 2.16 для сухих трансформаторов всех мощностей не проводятся.
    2. Измерения сопротивления изоляции и tgd должны производиться при одной и той же температуре или приводиться к одной температуре. Измеренные значения tgd изоляции при температуре изоляции 20°С и выше, не превышающие 1%, считаются удовлетворительными, и ихпересчет к исходной температуре не требуется.
    3. Силовые трансформаторы 6-10 кВ мощностью до 630 кВА межремонтным испытаниям и измерениям не подвергаются.

    Физико-химические методы оценки состояния силовых трансформаторов в условиях эксплуатации. Показатели состояния трансформаторного масла.

    При эксплуатации силовых трансформаторов трансформаторное масло не только выполняет функции диэлектрика и охлаждающей среды, но и является диагностической средой. Большинство развивающихся дефектов может быть определено посредством своевременного контроля состояния трансформаторного масла. Это такие дефекты, как: локальные перегревы, разряды в масле, искрение, загрязнение и увлажнение изоляции, попадание воздуха, окисление и старение самого масла и твердой изоляции. Поэтому совершенствование методов оценки различных показателей трансформаторного масла является весьма актуальной задачей.

    Значительная доля существующих методов оценки состояния трансформаторного масла основана на контроле его физико-химических показателей. Часть из них позволяет оценивать состояние изоляции трансформаторов в процессе их эксплуатации.

    По существующим требованиям в процессе эксплуатации силовых трансформаторов предусмотрено измерение следующих показателей масла: пробивное напряжение, содержание механических примесей, тангенс угла диэлектрических потерь масла, температура вспышки в закрытом тигле, кислотное число, содержание водорастворимых кислот и щелочей, влагосодержание, содержание антиокислительной присадки, газосодержание масла, хроматографический анализ растворенных газов, содержание фурановых производных.

    Кислотное число — это количество едкого калия (КОН), выраженного в миллиграммах, которое необходимо для нейтрализации свободных кислот в 1 г масла. Данный показатель свидетельствует о содержании в масле любых кислых веществ. Его увеличение свидетельствует об окислении масла, а это может вызывать коррозию конструкционных элементов, развитие коллоидно-дисперсных процессов и в конечном итоге ведет к снижению электрической прочности масла. Кислоты также могут способствовать увеличению поглощения воды бумажной изоляцией.

    Содержание водорастворимых кислот и щелочей свидетельствует о качестве масла. Они могут появиться как в процессе изготовления масла, так и образоваться в результате его окисления в процессе эксплуатации. Этот показатель также способствует развитию коррозии и старению бумажной изоляции.

    Влагосодержание, как показатель состояния масла контролируется в процессе эксплуатации. Увеличение влагосодержания масла возможно при попадании атмосферной влаги в масло из-за неисправности или отсутствия осушителей у трансформаторов со свободным дыханием, а также из-за засасывания влажного воздуха или дождевой воды в масло у трансформаторов с принудительной системой охлаждения при ее негерметичности. Увеличение влагосодержания трансформаторного масла приводит к снижению электрической прочности масла и маслобарьерной изоляции трансформатора в целом.

    Газосодержание масла в процессе эксплуатации также контролируется в трансформаторах с пленочной защитой масла от окисления для оценки его герметичности. Повышение газосодержания масла способствует более интенсивному его окислению и ухудшению электрической прочности изоляции активной части трансформатора.

    Хроматографический анализ газов, растворенных в масле, позволяет с высокой степенью достоверности диагностировать развивающиеся дефекты в трансформаторе, связанные с электрическими разрядами в изоляции и локальными перегревами. Так как при появлении местных нагревов или электрических разрядов масло и соприкасающаяся бумажная изоляция разлагаются, а образующиеся газообразные продукты растворяются в масле.

    Содержание фурановых производных в трансформаторном масле косвенно может свидетельствовать о деструкции бумажной изоляции. Термолиз, окисление и гидролиз изоляции вызывают частичное разрушение макромолекул целлюлозы, приводят к образованию компонентов фуранового ряда, которые выделяются в трансформаторное масло.

    Такие физико-химические показатели, как кислотное число, содержание водорастворимых кислот и щелочей, влагосодержание и газосодержание масла являются традиционными в практике эксплуатации силовых трансформаторов на протяжении многих лет. Применение хроматографического анализа газов, растворенных в масле, и показателей оценки состояния бумажной изоляции силовых трансформаторов в эксплуатации началось сравнительно недавно. Тем не менее, накоплен достаточно большой опыт применения хроматографического анализа газов, растворенных в масле силовых трансформаторов напряжением 110-750 кВ, для выявления дефектов в эксплуатации. Накопленный опыт позволяет сформулировать совокупность диагностических признаков, имеющих высокую достоверность, и определить вид и характер выявляемых ими дефектов.

    С помощью хроматографического анализа газов в силовых трансформаторах можно обнаружить две группы дефектов:

    • перегревы токоведущих соединений и элементов конструкции остова;
    • электрические разряды в масле.

    Для этого определяются концентрации семи газов: водорода (Н2), метана (СH4), ацетилена (С2Н2), этилена (С2H4), этана (С2Н6), оксида углерода (СО) и диоксида углерода (СО2). Используется подразделение газов на основные (ключевые) и характерные (сопутствующие).

    При перегревах токоведущих соединений и элементов конструкции остова трансформатора основным газом является С2Н4 — в случае нагрева масла и бумажно-масляной изоляции свыше +500°С и С2Н2 — при дуговом разряде. Характерными газами в обоих случаях являются Н2, СH4, и С2Н6.

    При частичных разрядах в масле основным газом является Н2, характерными газами с малым содержанием — СН4 и С2H2.

    При искровых и дуговых разрядах основными газами являются Н2 или С2H2, характерными газами с любым содержанием — СН4 и С2Н4.

    При перегревах твердой изоляции основным газом является СО2. Следует также отметить, что сопутствующим показателем деструкции целлюлозной изоляции трансформатора является рост содержания оксида и диоксида углерода, растворенных в трансформаторном масле. Наличие суммарной концентрации CO и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции.

    Нужно отметить, что при анализе состава и концентраций растворенных в масле газов в целях диагностики эксплуатационного состояния силовых трансформаторов необходимо учитывать факторы, вызывающие их изменения.

    К эксплуатационным факторам, вызывающим увеличение концентрации растворенных в масле газов, относятся:

    • остаточные концентрации газов проникших во время ремонта трансформатора, если не была проведена дегазация масла;
    • увеличение нагрузки трансформатора;
    • доливка маслом, бывшим в эксплуатации и содержащим растворенные газы;
    • проведение сварочных работ на баке и др.

    К эксплуатационным факторам, вызывающим уменьшение концентрации растворенных в масле газов трансформаторов, относятся:

    • уменьшение нагрузки трансформатора;
    • дегазация масла;
    • доливка дегазированным маслом;
    • замена силикагеля и др.

    Для диагностики развивающихся дефектов в силовых трансформаторах используются следующие основные критерии:

    • критерий граничных концентраций;
    • критерий скорости нарастания газов;
    • критерий отношения пар характерных газов.

    Суть методики критериев заключается в том, что выход значений параметров за установленные границы следует рассматривать как признак наличия дефектов, которые могут привести к отказу оборудования. Особенность метода хроматографического анализа газов заключается в том, что нормативно устанавливаются только граничные концентрации газов, достижение которых свидетельствует лишь о возможности развития дефектов в трансформаторе. Такие трансформаторы следует брать под особый контроль с учащенным отбором проб масла и проведением хроматографического анализа.

    Критерий граничных концентраций позволяет выделить из общего количества трансформаторного парка трансформаторы с возможными развивающимися дефектами, а степень опасности развития дефекта определяется по относительной скорости нарастания концентрации газа (газов). Если относительная скорость нарастания концентрации газа (газов) превышает 10% в месяц, то дефект считается быстроразвивающимся.

    Характер развивающегося дефекта по результатам хроматографического анализа газов определяется по критериальным отношениям концентраций различных пар газов. Принято различать дефекты теплового и электрического характера. К первым относятся: возникновение короткозамкнутых контуров, повышенные нагревы изоляции, контактов, отводов, шпилек и других металлических конструкций остова и бака трансформатора. К дефектам электрического характера относятся разряды различной интенсивности. Естественно, развитие дефекта в трансформаторе может иметь смешанный характер. Анализ существующих методик оценки характера развивающихся дефектов (теплового или электрического характера) по результатам хроматографического анализа показывает, что в них имеются значительные различия как по виду, так и по количеству используемых отношений пар газов. Ниже приведены используемые отношения пар характерных газов основных существующих методик: Дорненбурга (Dornenburg`s method), Мюллера (Mailer’s method), Роджерса (CEGB/Rogers Ratios), МЭК (IEC 60599), ВЭИ.

    Методика Дорненбурга: CH2/H2, C2H2/C2H4, C2H6/C2H2, C2H2/CH4
    Методика Мюллера: CH4/H2, C2H4/C2H6, CO/CO2, C2H6/C2H2
    Методика Роджерса: CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H6/CH4
    Методика МЭК: CH4/H2, C2H2/C2H4, C2H4/C2H6
    Методика ВЭИ: CH4/H2, C2H4/CH4, C2H6/CH4, C2H2/C2H4, C2H6/C2H2, C2H4/C2H6

    Получаемые по отношению концентраций газов признаки имеют достаточно условную диагностическую ценность, так как они ориентированы на определение характера развивающегося дефекта после превышения установленных граничных концентраций хотя бы у одного углеводородного газа или водорода. Статистический анализ показал, что наибольшую диагностическую ценность имеет методика МЭК (ГЕС 60599), которая и рекомендована к применению.

    Результаты хроматографического анализа растворенных газов в масле силового трансформатора являются показаниями для проведения внеочередных измерений сопротивления изоляции обмоток, тангенса угла диэлектрических потерь обмоток, сопротивления обмоток постоянному току, потерь холостого хода, тепловизионного контроля поверхностей бака трансформатора и системы охлаждения, а также проведения хроматографического анализа растворенных газов в масле бака контактора. По совокупности результатов измерений принимается решение о проведении дальнейших мероприятий с данным трансформатором (оставить трансформатор в работе с учащенным контролем, провести дегазацию масла, вывести трансформатор в ремонт и проч.).

    Источник: © Львов М.Ю., Кутлер П.П. Физико-химические методы в практике оценки состояния силовых трансформаторов в условиях эксплуатации: Учебно-методическое пособие. — М.: ИУЭ ГУУ, ВИПК-энерго, ИПК госслужбы, 2003. — 20 с

    Пленочная защита трансформаторного масла

    Трансформаторное масло применяется в качестве изолирующей среды в силовых и измерительных трансформаторах, маслонаполненных вводах и выключателях.

    Условия работы масла в электрооборудовании (нагревании рабочим током, действие горящей дуги, загрязнение частицами твердой волокнистой изоляции, увлажнение от соприкосновения с окружающей средой и т.п.) предъявляют к нему довольно жесткие требования.

    Свежее трансформаторное масло перед заливкой в оборудование должно пройти испытание в соответствии с требованиями ПУЭ. Эксплуатационное трансформаторное масло испытывается в соответствии с требованиями ПЭЭП.

    Для испытаний пробу трансформаторного масла, прибывшего с завода-изготовителя или находящегося в электрооборудовании, отбирают из нижней части емкости или бака оборудования, предварительно промыв маслом сливное отверстие. Посуда, в которую отбирают пробу масла, должна быть чистой и хорошо высушенной.

    Минимальное пробивное напряжение масла определяют на аппаратах типа АМИ-80 или АИИ-70М в маслопробойном сосуде со стандартным разрядником, который состоит из двух плоских латунных электродов толщиной 8 мм с закругленными краями и диаметром 25 мм с расстоянием между электродами 2,5 мм.

    Перед испытанием банку или бутылку с пробой масла несколько раз медленно переворачивают вверх дном, добиваясь, чтобы в масле не было пузырьков воздуха. Фарфоровый сосуд, в котором испытывают масло, вместе с электродами три раза ополаскивают маслом их пробы. Масло льют на стенки сосуда и электроды тонкой струей, чтобы не образовались воздушные пузырьки. После каждого ополаскивания масло полностью сливают.

    Уровень залитого масла в сосуде должен быть на 15 мм выше верхнего края электрода. Защитному маслу в сосуд необходимо отстояться 15-20 мин. для удаления воздушных пузырьков. Повышение напряжения до пробоя производится плавно со скоростью 1-2 кВ/с. После пробоя, который отмечается искрой между электродами, напряжение снижают до нуля и вновь увеличивают до следующего пробоя. Всего производится шесть пробоев с интервалами между ними 5-10 мин. После каждого пробоя из промежутка между электродами стеклянными или металлическими чистыми стержнями помешиванием удаляют обуглероженные частицы масла. Затем жидкости дают отстояться в течение 10 мин.

    Напряжение, при котором происходит первый пробой, во внимание не принимается. Пробивное напряжение трансформаторного масла определяется как среднее арифметическое значение из пяти последующих пробоев.

    Нормы приемо-сдаточных испытаний.

    Объем приемо-сдаточных испытаний трансформаторного масла.

    В соответствии с требованиями ПУЭ трансформаторное масло на месте монтажа электрооборудования испытывается в следующем объеме:

    1. Анализ масла перед заливкой в оборудование.
    2. Анализ масла перед включением оборудования.
    3. Испытание масла из аппаратов на стабильность при его смешивании.

    Анализ масла перед заливкой в оборудование.

    Каждая партия поступившего с завода трансформаторного масла перед заливкой в оборудование должна подвергнуться однократным испытаниям по всем показателям, приведенным в табл. 2.14, кроме п.3. Значения показателей полученных при испытаниях, должны быть не хуже приведенных в табл. 2.14.

    Масла, изготовленные по техническим условиям, не указанным в табл. 2.14, должны подвергаться испытаниям по тем же показателям, но нормы испытаний следует принимать в соответствии с техническими условиями на эти масла.

    Анализ масла перед включением оборудования.

    Масло, вновь залитое в оборудование, перед его включением под напряжение после монтажа должно быть подвергнуто сокращенному анализу. В сокращенный анализ масла входят: определение минимального пробивного напряжения, качественное определение наличия механических примесей и взвешенного угля, определение кислотного числа, выяснение реакции водной вытяжки или количественное определение водорастворимых кислот и установление температуры вспышки. Нормы испытаний представлены в пп. 1-6 табл. 2.14, а для оборудования 110 кВ, кроме того, в п. 12 табл. 2.14.

    Испытание масла из аппаратов на стабильность при его смешивании.

    При заливке в электрооборудование свежих кондиционных масел разных марок смесь проверяется на стабильность в пропорциях смешения, причем стабильность смеси должна быть не хуже стабильности одного из смешиваемых масел, обладающего меньшей стабильности.

    Проведение периодических проверок, измерений и трансформаторного масла, находящегося в эксплуатации

    В процессе эксплуатации качество трансформаторного масла должно соответствовать нормам, указанным в табл. 2.21.

    Объем и периодичность испытаний эксплуатационного масла зависит от конкретного типа оборудования или аппарата.

    Для силовых трансформаторов, автотрансформаторов и масляных реакторов трансформаторное масло испытывается в объеме и сроки, согласно нормативов.

    Для масляных выключателей трансформаторное масло испытывается в объеме и сроки, согласно нормативов.

    Для измерительных трансформаторов трансформаторное масло испытывается в объеме и сроки, согласно нормативов.

    Для маслонаполненных вводов трансформаторное масло испытывается в объеме и сроки, согласно нормативов.

    Как заказать услуги в нашей компании

    Позвоните нам по номеру 8 (915) 208-27-05 или оставьте свой номер, чтобы мы могли вам перезвонить

    Один звонок и наши специалисты приедут к вам в кратчайшие сроки.

    Разновидности защит и их суть

    Все защиты для трансформаторов должны обладать достаточным быстродействием, чтобы вовремя отключить опасный режим. Так как при возникновении сверхбольших электрических величин он запросто приведет к разрушению изоляции, отпуску металла, возгораниям и прочим неприятным последствиям.

    Для предотвращения перегрузок выполняется установка того или иного вида защиты на трансформатор. Какая именно защита используется на понижающих подстанциях, в оборудовании распределительных устройств, определяется местными условиями и особенностями режима работы.

    Продольная дифференциальная защита

    Область применения дифференциальной токовой защиты охватывает как сам силовой трансформатор, так и окружающие его присоединения вплоть до измерителей токовой нагрузки. Нормальным режимом работы каждого трансформатора считается равномерное перераспределение нагрузки между всеми тремя фазами, когда электрический ток в каждой из них получается приблизительно одинаковым.

    Продольные дифференциальные защиты осуществляют сравнение токовой нагрузки во всех фазах. Так как ток примерно одинаков, то их геометрическая сумма должна равняться нулю. В результате сравнения получается, что токовая составляющая отсутствует или слишком мала для реакции. Но, как только произойдет замыкание одной фазы или сразу между несколькими, токи в них перестанут компенсировать друг друга, и их сумма будет отличаться от нуля, сработает дифференциальная отсечка.

    Рис. 3. Пример дифференциальной защиты

    Релейная

    Для предотвращения повреждения трансформаторов применяется достаточно большое количество релейных защит. Однако отдельного внимания заслуживает реле контроля уровня масла. Этот вид предусматривает контроль за состоянием изоляционной среды. Конструктивно реле представляет собой поплавок с контактами, который удерживается выше контактов цепи срабатывания.

    Если аварийный режим приведет к утечке масла и последующему снижению менее нормы, после которой может произойти пробой, произойдет отключение. Может располагаться в основном баке или иметь резервную релейную защиту в расширителе, которая предварительно даст сигнал о начале процесса.

    Тепловая

    Основой для тепловой защиты в трансформаторах служит классическая термопара. Место ее расположения определяется типом устройства, его мощностью и габаритами, так как перегрев может привести к нарушению изоляционных свойств, привести к термическому расширению масла.

    К наиболее эффективным местам размещения относятся:

    • в верхней части бака;
    • у высоковольтных вводов;
    • в обмотках.

    Имеет две ступени – первая производит включение резервных вентиляторов или других средств охлаждения. Вторая, если первой не удалось сбросить перегрев ниже предельного значения, производит отключение трансформатора.

    Токовая отсечка

    Данный вид защиты применяется для отключения повреждения, которое могло возникнуть внутри трансформатора. Она размещается со стороны вводов защищаемого трансформатора, однако воздействие охватывает все обмотки, с которых может быть подано напряжение. Особенностью ее применения является схема питания, которая используется в соответствующей линии.

    Так для трехфазных цепей с изолированной нейтралью токовая отсечка должна устанавливаться в двух фазах. А при использовании цепей с глухозаземленной нейтралью защита должна применяться в каждом фазном присоединении. При отключении трансформатора полностью отсутствует какая-либо выдержка времени.

    Недостатком отсечки является срабатывание исключительно на токи большой величины. Поэтому некоторые межфазные КЗ, межвитковых или КЗ на землю в цепи с изолированной нейтралью могут остаться незамеченными. На практике это один из самых простых способов, отключающих трансформатор в аварийном режиме.

    Газовая защита

    Газовое реле, как вид защиты, нашло широкое применение в маслонаполненных трансформаторах, где роль диэлектрика, разделяющего токоведущие элементы и заземленную конструкцию корпуса, выполняет трансформаторное масло. В нормальном режиме работы понижающие трансформаторы не воздействуют на жидкий диэлектрик, и масло пребывает в постоянном физическом состоянии.

    Но, в случае возникновения межвитковых замыканий, контакта проводников со сталью или других ситуаций внутри бака горение дуги или разогрев металла приводит к локальному закипанию масла. От этого места и начинается выделение газов, которые поднимаются в верхнюю точку емкости.

    Рис. 5. Пример газовой защиты

    Для всей емкости верхняя точка – это расширительный бак, поэтому устанавливают газовое реле в соединительной трубе между расширителем и баком трансформатора. Конструктивно газовая защита представляет собой поплавок, с двумя контактами. При погружении в масло поплавок находится в незамкнутом положении. Как только выделившиеся газы поднимутся по трубе, поплавок упадет и замкнет контакты, масляный трансформатор отключится.

    Струйная защита

    Используется в трансформаторах с первичными и вторичными обмотками на 110, 35, 10, 6, 3,3кВ, где присутствует возможность переключения величины напряжения под нагрузкой. Устройство РПН, как правило, размещается в отдельном баке внутри основного, который изолирует его от высоковольтных обмоток. Переключение позиций РПН под нагрузкой может обуславливать как штатные коммутационные явления, так и аварийные. Последние приводят к выбросу масла от бака к расширителю.

    Для реакции на такие повреждения и устанавливается струйная защита, так как поток масла от РПН активирует измерительный датчик. Далее происходит отключение выключателя, который обесточит обмотки трансформатора.

    Максимальная токовая защита

    Максимальная токовая защита применяется для срабатывания в ответ на токи КЗ, расположенные в непосредственной близости к источнику. Сюда относятся повреждения как на обмотках, так и на ближайших шинах подстанции, в окружающем оборудовании и ит.д.

    На практике выделяют большое количество вариантов исполнения МТЗ:

    • От внутренних и внешних КЗ;
    • МТЗ с комбинированным пуском по напряжению;
    • МТЗ с пуском по напряжению и фильтром напряжения обратной последовательности;
    • Обратной последовательности комбинированная с устройством против трехфазных КЗ;

    Помимо аварийных режимов для МТЗ может устанавливаться режим защиты от перегрузки. Для этого устанавливается ток срабатывания в определенных пределах. Уставка выбирается исходя из максимального значения нагрузки, чтобы не происходило срабатывания автоматического выключателя в нормальном режиме работы.

    Токовая защита нулевой последовательности

    Предназначена для защиты трансформатора от возможного замыкания как одной, так и двух фаз на землю. Это те ситуации, когда в трехфазной системе нарушится симметрия нагрузки и относительно нулевой точки сумма токов больше не будет равна нулю.

    Равновесие системы нарушится, что и спровоцирует отключение питания спустя заданный временной промежуток. Часто комбинируется с АПВ, тогда через несколько секунд происходит повторное включение выключателя, на случай если замыкание самоустранилось.

    Специальная резервная защита

    Специальная резервная защита предназначена для автономного резервирования МТЗ по токовым цепям. Может использоваться как по высокой, так и по низкой стороне трансформатора. Их действие нацелено на первичные и вторичные максимальные токи, которые могут возникнуть в непосредственной близости от защищаемого объекта. Работа СРЗ, как правило, имеет выдержку по времени относительно основных МТЗ по стороне 110 – 220 кВ.

    Токовая ступенчатая защита

    Как и предыдущий вариант, представляет собой разновидность МТЗ, которая выстраивается в ключе последовательности срабатывания для разных обмоток. Широко используется в цепях, где потребители подключаются к источнику с большими пусковыми токами. Однако чувствительность максимальной защиты имеет дополнительную привязку к напряжению, что и обеспечивает блокировку автоматического отключения в случае запитки слишком мощной нагрузки, так как просадка напряжения не достигает установленного предела.

    Ступени отстраиваются с таким временным промежутком, чтобы воздействие на выключатели нагрузки производились после основной токовой защиты.

    Защита от минимального напряжения

    В случае снижения питающего напряжения возможны два варианта развития событий – удаленное короткое замыкание, которое другими защитами распознается как большая нагрузка или подключение слишком большой суммарной нагрузки. И тот и другой вариант пагубно сказывается на работе трансформатора, поэтому и при аварийном режиме, и при перегрузке устанавливается выдержка времени, после которой происходит один из таких вариантов:

    • отключение аварийного участка;
    • вывод неприоритетных потребителей из работы;
    • автоматическое включение резерва.
    Читать еще:  Пуэ защитное заземление электроустановок до 1000в
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector