Beton-52.ru

Домашнему мастеру
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Измерение сопротивления контура заземления

Измерение сопротивления контура заземления

При использовании электрических приборов всегда существует риск поражения электрическим током. Эта вероятность происходит из свойств упорядоченного потока заряженных частиц: он проходит через тот участок цепи, в котором сопротивление имеет минимальное значения. В разное время производители приборов и комплектующих пытались бороться с этим и обезопасить человека от вредного или даже смертельного воздействия тока. Но в конечном итоге наиболее простым и надежным остается заземление.

Заземление применяется на промышленных предприятиях и в загородных домах. Особую роль оно играет в случае, когда мощность прибора превышает критические значения. Человеку достаточно получить удар силой 0.1 ампера, чтобы гарантированно погибнуть. Также не стоит забывать, что даже исправное оборудование может служить источником опасности. Это может случиться из-за разряда молнии и по некоторым другим причинам. Следовательно, к вопросу установки заземления стоит подходить ответственно и учитывать все нюансы.

Сопротивление заземления молниезщиты

Принцип действия громоотвода — перехват молнии и перенаправление разряда в землю для нейтрализации. Но эффективность всей системы зависит от величины сопротивления заземления молниезащиты, то есть от способности грунта поглощать электрический ток. Параметр измеряется в Ом, должен стремиться к нулю, однако, структура почв не позволяет достичь идеального значения.

Нормы для сопротивления заземления молниезащиты

В Инструкции по устройству молниезащиты РД 34.21.122-87 регламентированы максимальные значения противодействия растеканию тока для различных категорий зданий и сооружений, с учетом удельного сопротивления грунта:

  • I и II категория — 10 Ом;
  • III категория — 20 Ом;
  • Если электропроводность превышает 500 Ом*м — 40 Ом;
  • Наружные установки — 50 Ом.

Сопротивление падает в 2-5 раз при увеличении силы тока молнии.

Качество заземления молниезащиты

Ключевой параметр — сопротивление заземления — зависит от конфигурации заземлителя и удельного сопротивления почвы. Для вычисления значения существует специальная формула. Но для готовых заземлителей задача значительно упрощается: производитель предоставляет заранее подсчитанный коэффициент, который достаточно умножить на удельное сопротивление грунта, чтобы получить искомое значение.

Удельное сопротивление для различных грунтов

Значение прежде всего зависит от влажности и состава почвы, плотности прилегания пластов, наличия кислот, солей и щелочей. Вычисляется путем проведения геологических изысканий. Это комплекс сложных мероприятий, поэтому при расчетах принято использовать справочные величины:

  • Песчаный грунт, увлажненный поземными водами — 10-60 Ом*м;
  • Песок сухой — 1500-4200 Ом*м;
  • Бетон — 40-1000 Ом*м;
  • Чернозем — 60 Ом*м;
  • Глина — 20-60 Ом*м;
  • Илистая почва — 30 Ом*м;
  • Садовая земля — 40 Ом*м;
  • Супесь — 150 Ом*м;
  • Суглинок полутвердый — 100 Ом*м;
  • Солончак — 20 Ом*м.

На практике сопротивление молниезащиты всегда будет ниже расчетного значения: при погружении электрода в землю значительно снижается удельное сопротивление из-за уплотнения и увлажнения почвы грунтовыми водами.

Требования к заземлителю

Согласно РД 34.21.122-87 для заземления необходимо не менее трех электродов вертикального типа. Расстояние между ними — как минимум в два раза больше, чем глубина погружения. Кроме того, СО 153-34.21.122-2003 требует, чтобы расстояние от стен здания до электродов было не менее 1 метра.

Уменьшение сопротивления заземления

Поскольку удельное сопротивление почвы — величина относительно постоянная, для увеличения электропроводности необходимо изменять конфигурацию заземлителя: увеличивать площадь соприкосновения электродов с грунтом. Можно удлинить проводник или создать контур заземления: несколько отдельно стоящих электродов соединяются в единую сеть. В расчет берется сумма площадей.

Современные заземлители — эффективны и просты в установке. Электроды заглубляются до 30 метров. Благодаря этому удается значительно уменьшить общую площадь, компактно разместить заземлитель молниезащиты в условиях ограниченного пространства. Для монтажа не нужны специальные инструменты, штыри стыкуются между собой муфтой с резьбовым соединением. Медное покрытие электродов обеспечивает защиту от коррозии, увеличивая срок службы до 100 лет!

Измерение сопротивления заземления и периодичность проверок

Производятся с помощью специальных приборов (измерительных комплексов) по заданной схеме измерений в нескольким точках смонтированного контура молниезащиты. Данные показаний заносятся в специальную форму — протокол проверки сопротивлений заземлителей и заземляющих устройств.

Замеры производят всегда по окончании монтажа системы молниезащиты и заземления, а также после выполнения ремонтных работ как на устройствах молниезащиты, так и на самих защищаемых объектах и вблизи них. Полученные данные заносят в акты (протоколы проверок), паспорта заземляющих устройств и журналы учета.

Примеры протоколов и паспортов можно посмотреть по этой ссылке.

Кроме внеочередных мероприятий существует регламент проведения измерения значений сопротивления, которые осуществляют для разных категорий зданий и сооружений с следующей периодичностью: для категории I II — 1 раз в год перед сезоном гроз, для III категории — не реже 1 раза в 3 года, для взрывоопасных объектов и производств — не реже 1 раза в год.

Важно использовать при этом приборы, поверенные должным образом, а также правильно выбрать точки измерений. Вот почему необходимо обращаться при этом в специализированные организации, которые имеют в своем распоряжении квалифицированный персонал и необходимые приборы, а также могут гарантировать вам качество работ на определенное время.

Компания «МЗК-Электро» предлагает квалифицированный монтаж заземления. Опытные специалисты проведут необходимые расчеты, подберут оптимальное по стоимости и эффективности решение для конкретного объекта. В работе используем сертифицированное оборудование от ведущих производителей. Доверьте проектирование громоотвода профессионалам — вы гарантированно получите надежную молниезащиту!

СОПРОТИВЛЕНИЕ ЗАЗЕМЛЕНИЯ

Что такое сопротивление заземления?
Величина «недопущения/противодействия» растеканию электрического тока в землю — называется сопротивлением заземления, измеряющееся в Ом.

Основным показателем качества заземляющего устройства является сопротивление заземления и оно напрямую зависит от удельного сопротивления грунта и конфигурации заземлителя/ей(их количества и протяжённости).

Требования к сопротивлению указываются в нормативных документах и не должны превышать максимально допустимых значений.
Этими нормативными документами являются ПУЭ ( таблица 1.8.38 ) и ПТЭЭП.
При новом строительстве производятся приемо-сдаточные испытания по ПУЭ. При проверке сопротивления заземления уже во время эксплуатации, руководствуются ПТЭЭП

Читать еще:  Как сделать заземление в гараже своими руками

Пример.
Какое требуется соротивление заземления для частного загородного дома подключаемого от ВЛ 220 / 380?

В соответствие с требованием ПУЭ для электроустановок частных домов с воздушным вводом, с подключением к электросети 220 Вольт / 380 Вольт(с ситемой заземления TN) необходимо иметь заземление с сопротивлением не более 30 Ом.

Оригинальный текст:
ПУЭ [1.7.103.] Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях. При удельном сопротивлении земли r > 100 Ом м допускается увеличивать указанные нормы в 0,01r раз, но не более десятикратного.

Если сформулироовать простыми фразами — в загородном доме запитанным от ВЛ(воздушная линия) и с заземляющим устройством, поключенным к нулевому проводу(повторное заземление), сопротивление самого контура заземления не должно быть больше 30 Ом.
При приемосдаточных испытаниях для подключения газового котла, могут потребовать сопротивление со значением не более 10 Ом.
При наличии молниеприемника сопротивление контура заземления, в соответствии с Инструкцией по молниезащите РД 34.21.122-87 — так же не более 10 Ом.

Нормы приемосдаточных испытаний(ПУЭ).
Наибольшие допустимые значения сопротивлений заземляющего устройства.

5. Измерение сопротивления заземляющих устройств. Значения сопротивления заземляющих устройств с подсоединенными естественными заземлителями должны удовлетворять значениям, приведенным в соответствующих главах настоящих Правил. Таблица 1.8.38.


I p* — расчетный ток замыкания на землю;
** — соответственно при линейных напряжениях 660, 380, 220 В;
I *** — полный ток замыкания на землю.

Общие сведения ПУЭ о сопротивлении заземления электроустановок.

Сопротивлениях заземляющих устройств электроустановок напряжением до 1 кВ в сетях с глухозаземленной нейтралью:

1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN- или PE-проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При удельном сопротивлении земли r > 100 Ом*м допускается увеличивать указанные нормы в 0,01r раз, но не более десятикратного.

Сопротивление заземляющих устройств электроустановок напряжением до 1 кВ в сетях с изолированной нейтралью:

1.7.104. Сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей, в системе IT должно соответствовать условию:

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность генераторов или трансформаторов не превышает 100 кВА, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.

Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью:

1.7.96. В электроустановках напряжением выше 1 кВ сети с изолированной нейтралью сопротивление заземляющего устройства при прохождении расчетного тока замыкания на землю в любое время года с учетом сопротивления естественных заземлителей должно быть

но не более 10 Ом, где I — расчетный ток замыкания на землю, А.
В качестве расчетного тока принимается:
1) в сетях без компенсации емкостных токов — ток замыкания на землю;
2) в сетях с компенсацией емкостных токов:
для заземляющих устройств, к которым присоединены компенсирующие аппараты, — ток, равный 125 % номинального тока наиболее мощного из этих аппаратов;
для заземляющих устройств, к которым не присоединены компенсирующие аппараты, — ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов.
Расчетный ток замыкания на землю должен быть определен для той из возможных в эксплуатации схем сети, при которой этот ток имеет наибольшее значение.
1.7.97. При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ с изолированной нейтралью должны быть выполнены условия 1.7.104.
При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ с глухозаземленной нейтралью сопротивление заземляющего устройства должно быть не более указанного в 1.7.101 либо к заземляющему устройству должны быть присоединены оболочки и броня не менее двух кабелей на напряжение до или выше 1 кВ или обоих напряжений, при общей протяженности этих кабелей не менее 1 км.
1.7.98. Для подстанций напряжением 6-10/0,4 кВ должно быть выполнено одно общее заземляющее устройство, к которому должны быть присоединены:
1) нейтраль трансформатора на стороне напряжением до 1 кВ;
2) корпус трансформатора;
3) металлические оболочки и броня кабелей напряжением до 1 кВ и выше;
4) открытые проводящие части электроустановок напряжением до 1 кВ и выше;
5) сторонние проводящие части.
Вокруг площади, занимаемой подстанцией, на глубине не менее 0,5 м и на расстоянии не более 1 м от края фундамента здания подстанции или от края фундаментов открыто установленного оборудования должен быть проложен замкнутый горизонтальный заземлитель (контур), присоединенный к заземляющему устройству.
1.7.99. Заземляющее устройство сети напряжением выше 1 кВ с изолированной нейтралью, объединенное с заземляющим устройством сети напряжением выше 1 кВ с эффективно заземленной нейтралью в одно общее заземляющее устройство, должно удовлетворять также требованиям 1.7.89-1.7.90.

Читать еще:  Контур заземления пуэ нормы

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как рассчитать заземление в частном доме вручную

Как вы уже поняли, основной параметр, который необходимо рассчитать – это общее сопротивление на растекание, т.е. нужно подобрать такую конфигурацию электродов, чтобы сопротивление заземляющего устройства, не превышало нормативное. Согласно положениям правил устройств электроустановок (ПЭУ), необходимо соблюдать определенные максимумы для токов:

  • 4 Ом — для 220 Вольт;
  • 4 Ом — для 380 Вольт;
  • 2 Ом — для 660 Вольт.

Правильный расчет начинается с подсчета оптимального размера и количества стержней. Для того чтобы сделать это вручную, легче всего воспользоваться упрощенными формулами, приведенными ниже.

  • Ro – сопротивление стержня, Ом;
  • L – длина электрода, м;
  • d – диаметр электрода, м;
  • T – расстояние от середины электрода до поверхности, м;
  • pэкв – сопротивление грунта, Ом;
  • ln — натуральный логарифм;
  • π — константа (3.14).

  • Rн – нормируемое сопротивление заземляющего устройства (2 или 4 Ом).
  • ψ – поправочный климатический коэффициент сопротивления грунта (1.3, 1.45, 1.7, 1.9, в зависимости от зоны).

Используя эти формулы, вы можете рассчитать заземляющее устройство достаточно точно, однако для упрощения расчета некоторые коэффициенты опускаются.

Также очень важно, чтобы при выборе глубины залегания и длины заземляющих стержней, нижний конец проходил ниже уровня промерзания, так как при отрицательных температурах резко возрастает сопротивление грунта, и возникают определенные сложности.

Параметр определяет собой уровень «электропроводности» земли как проводника = как хорошо будет растекаться в такой среде электрический ток, поступающий от заземлителя. Чем меньший размер будет иметь эта величина, тем меньше будет сопротивление заземления.

Удельное электрическое сопротивление грунта (Ом*м) — это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, его влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Обычно используется таблица ориентировочных величин «удельное сопротивление грунта», т.к. его точное измерение возможно только в ходе проведения специальных геологических изыскательных работ.

Читать еще:  Цвет полосы заземления по пуэ

Заземление как вид защиты подразумевает под собой сознательное соединение с землёй разрядников или молниеприёмников. Необходимо это для того, чтобы отвести от них в землю токи молнии.

Это соединение с землёй металлических, не являющихся токоведущими частей электрического оборудования, которое в результате аварийной ситуации может оказаться под напряжением. Такой вид заземления ещё и устраняет статическое электричество, которое иногда возникает на взрыво- и пожароопасных объектах (например, АЗС).

Искусственное заземление ↑

В данном варианте подразумевается умышленное электрическое соединение любой части электрической цепи с устройством заземления.

Для чего необходимо производить данные измерения? ↑

Делается это для того, чтобы определить в каком состоянии находятся заземляющие устройства и насколько их параметры соответствуют всем требованиям ПУЭ. От этого будет зависеть безопасность людей и защита оборудования на случай повреждения изоляционного покрытия кабеля.

Меры безопасности и организационные мероприятия ↑

К выполнению данных работ допускается лишь только тот персонал, который прошёл специальное обучение и проверку своих знаний и требований, описанных в правилах устройства электрооборудования (ПУЭ), ПТЭЭП и охране труда.

Работа по измерению величины сопротивления измеряющего устройства осуществляется по наряду, допуску или распоряжению. Все замеры должна осуществлять бригада, члены которой обязаны иметь группу по электропроводности не ниже третьей, а её бригадир – четвёртой. При этом во время работы электрических установок должны соблюдаться все правила техники безопасности.

При измерении величины сопротивления измеряющих устройств, с применением наружных токовых частей, должны применяться все мероприятия, связанные с защитой от влияния напряжения на заземлителе во время «стекания» с него на землю однофазного тока «КЗ». Работающая бригада обязана быть одета в специальную диэлектрическую обувь, перчатки и использовать только тот инструмент, ручки которого изолированы.

Во время сбора измерительной конструкции необходимо первым делом подсоединить провод к дополнительному электроду, и только потом подключить его к самому прибору измерения величины сопротивления измеряющих устройств.

Подготовительный процесс ↑

Замер величины сопротивления измеряющих устройств необходимо производить зимний или летний период. В этот время года сопротивление земли имеет максимальное значение. Если в испытуемой электрической установке располагается не много оборудования, то замеры проверяются на корпус заземлённого устройства. А вот при большом их числе – раздельно. Это сопротивление заземлителя и самого заземляющего проводника. Чтобы произвести данные замеры, на определённом расстоянии устанавливают дополнительный заземлитель.

Для контроля величины падения напряжения, при прохождении тока через заземлитель, в области нулевого потенциала устанавливают специально предназначаемый зонд. Точность замера величины сопротивления измеряющего устройства зависит от того, на каком расстоянии находятся испытуемый и вспомогательный заземлитель, а также расстояния между ними.

Электроды необходимо разносить таким образом, чтобы они располагались не ближе чем десять метров от различного рода подземных конструкций, состоящих из металла.

Какие приборы использовать? ↑

Изначально, защитное заземление проверяется при помощи визуального осмотра всех видимых её частей. Проверку же величины сопротивления невидимых заземляющих устройств осуществляют при помощи «мегаомметра». С его помощью применяется трёх или четырёх проводной метод измерений. Подключение прибора к самой электрической установке осуществляется при использовании специального щупа.

Допустимое сопротивление заземляющего устройства, при различных условиях, нормируется и отображается в таблице «1.8.38» ПУЭ (издание №7), а также в приложении «3.1» (таблица 36). Согласно этим данным, данный параметр не должен превышать номинальный параметр, причём в любое время года.

Измерение заземления ↑

Систему заземления нужно проверять, а также контролировать её состояние. Поэтому измерение сопротивления заземления является важной процедурой. Устройство заземления может на протяжении долгого периода времени не сигнализировать о своих неисправностях до того момента, пока не случится авария.

Допустимое сопротивление заземляющего устройства при различных условиях нормируется и отображено в таблице 1.8.38 ПУЭ (издание №7), а также в приложении 3.1 (таблица 36). Согласно этим данным величина сопротивления заземляющего устройства не должна быть выше номинального параметра, причём в любое время года.

Измерение характеристик заземления осуществляется при помощи визуального осмотра видимых её частей. Проверку же невидимой части проводят при помощи специальных приборов. Во время контроля величины сопротивления необходимо выполнять следующие условия: измерение производится в самые неблагоприятные для электрических цепей времена года (зимой и летом), когда есть условия с наименьшей проводимостью.

Для электрических установок трёхфазного тока, напряжение которых не превышает 1 кВ, величина сопротивления должна находиться в пределах 2, 4 и 8 Ом для линейного напряжения или 660, 380 и 220В соответственно. Сопротивление заземлителя, который располагается в непосредственной близости к трансформатору или генератору, должно находиться в пределах 15, 30 и 60 Ом для тех же напряжений.

Как часто стоит производить измерения? ↑

Допустимые значения и частоту измерений величины сопротивления заземляющих устройств определяют согласно ПТЭЭП (приложение №3). Измерять данный параметр необходимо:

  • перед тем, как оборудование вводится в эксплуатацию;
  • по завершению его модернизации;
  • после завершения ремонтных работ.

Все запланированные замеры в обязательном порядке обязаны вноситься в план ППР. Производятся они не меньше, чем один раз в год. А ручные электрические приборы, светильники и прочее, необходимо проверять один раз в полгода.

Частота замеров сопротивления изоляции в сырых или жарких помещениях, наружных электрических установках и сооружениях с химически-активной средой, обязано производиться раз в году. В этих случаях, величина сопротивления не должна быть менее 0,5 МОм.

Во всех остальных случаях, измерения величины сопротивления заземляющих устройств осуществляются один раз за три года. Электрическое оборудование, такое как сварочные агрегаты, переносные аппараты и т.п., проверяется один раз в полгода.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector